博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【干货】PyTorch Tricks 集锦
阅读量:3729 次
发布时间:2019-05-22

本文共 6427 字,大约阅读时间需要 21 分钟。

点击上方,选择星标置顶,每天给你送干货

阅读大概需要10分钟

跟随小博主,每天进步一丢丢

作者 | z.defying

整理 | Datawhale

目录:

1 指定GPU编号

2 查看模型每层输出详情

3 梯度裁剪

4 扩展单张图片维度

5 独热编码

6 防止验证模型时爆显存

7 学习率衰减

8 冻结某些层的参数

9 对不同层使用不同学习率

1. 指定GPU编号

设置当前使用的GPU设备仅为0号设备,设备名称为 /gpu:0

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

设置当前使用的GPU设备为0, 1号两个设备,名称依次为 /gpu:0/gpu:1: 

os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" ,根据顺序表示优先使用0号设备,然后使用1号设备。

指定GPU的命令需要放在和神经网络相关的一系列操作的前面。

2. 查看模型每层输出详情

Keras有一个简洁的API来查看模型的每一层输出尺寸,这在调试网络时非常有用。现在在PyTorch中也可以实现这个功能。

使用很简单,如下用法:

from torchsummary import summarysummary(your_model, input_size=(channels, H, W))

input_size 是根据你自己的网络模型的输入尺寸进行设置。

https://github.com/sksq96/pytorch-summary

3. 梯度裁剪(Gradient Clipping)

import torch.nn as nnoutputs = model(data)loss= loss_fn(outputs, target)optimizer.zero_grad()loss.backward()nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)optimizer.step()

nn.utils.clip_grad_norm_ 的参数:

  • parameters – 一个基于变量的迭代器,会进行梯度归一化

  • max_norm – 梯度的最大范数

  • norm_type – 规定范数的类型,默认为L2

知乎用户 @不椭的椭圆 提出:梯度裁剪在某些任务上会额外消耗大量的计算时间。

4. 扩展单张图片维度

因为在训练时的数据维度一般都是 (batch_size, c, h, w),而在测试时只输入一张图片,所以需要扩展维度,扩展维度有多个方法:

import cv2import torchimage = cv2.imread(img_path)image = torch.tensor(image)print(image.size())img = image.view(1, *image.size())print(img.size())# output:# torch.Size([h, w, c])# torch.Size([1, h, w, c])

import cv2import numpy as npimage = cv2.imread(img_path)print(image.shape)img = image[np.newaxis, :, :, :]print(img.shape)# output:# (h, w, c)# (1, h, w, c)

或(感谢知乎用户 @coldleaf 的补充)

import cv2import torchimage = cv2.imread(img_path)image = torch.tensor(image)print(image.size())img = image.unsqueeze(dim=0)  print(img.size())img = img.squeeze(dim=0)print(img.size())# output:# torch.Size([(h, w, c)])# torch.Size([1, h, w, c])# torch.Size([h, w, c])

tensor.unsqueeze(dim):扩展维度,dim指定扩展哪个维度。

tensor.squeeze(dim):去除dim指定的且size为1的维度,维度大于1时,squeeze()不起作用,不指定dim时,去除所有size为1的维度。

5. 独热编码

在PyTorch中使用交叉熵损失函数的时候会自动把label转化成onehot,所以不用手动转化,而使用MSE需要手动转化成onehot编码。

import torchclass_num = 8batch_size = 4def one_hot(label):"""    将一维列表转换为独热编码    """    label = label.resize_(batch_size, 1)    m_zeros = torch.zeros(batch_size, class_num)# 从 value 中取值,然后根据 dim 和 index 给相应位置赋值    onehot = m_zeros.scatter_(1, label, 1)  # (dim,index,value)return onehot.numpy()  # Tensor -> Numpylabel = torch.LongTensor(batch_size).random_() % class_num  # 对随机数取余print(one_hot(label))# output:[[0. 0. 0. 1. 0. 0. 0. 0.] [0. 0. 0. 0. 1. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0.]]

https://discuss.pytorch.org/t/convert-int-into-one-hot-format/507/3

6. 防止验证模型时爆显存

验证模型时不需要求导,即不需要梯度计算,关闭autograd,可以提高速度,节约内存。如果不关闭可能会爆显存。

with torch.no_grad():# 使用model进行预测的代码    pass

感谢知乎用户 @zhaz 的提醒,我把 torch.cuda.empty_cache() 的使用原因更新一下。

这是原回答:

Pytorch 训练时无用的临时变量可能会越来越多,导致 out of memory ,可以使用下面语句来清理这些不需要的变量。

官网上的解释为:

Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible innvidia-smi.torch.cuda.empty_cache()

意思就是PyTorch的缓存分配器会事先分配一些固定的显存,即使实际上tensors并没有使用完这些显存,这些显存也不能被其他应用使用。这个分配过程由第一次CUDA内存访问触发的。

而 torch.cuda.empty_cache() 的作用就是释放缓存分配器当前持有的且未占用的缓存显存,以便这些显存可以被其他GPU应用程序中使用,并且通过 nvidia-smi命令可见。注意使用此命令不会释放tensors占用的显存。

对于不用的数据变量,Pytorch 可以自动进行回收从而释放相应的显存。

更详细的优化可以查看:

优化显存使用:
https://blog.csdn.net/qq_28660035/article/details/80688427
显存利用问题:
https://oldpan.me/archives/pytorch-gpu-memory-usage-track

7. 学习率衰减

import torch.optim as optimfrom torch.optim import lr_scheduler# 训练前的初始化optimizer = optim.Adam(net.parameters(), lr=0.001)scheduler = lr_scheduler.StepLR(optimizer, 10, 0.1)  # # 每过10个epoch,学习率乘以0.1# 训练过程中for n in n_epoch:    scheduler.step()    ...

8. 冻结某些层的参数

参考:Pytorch 冻结预训练模型的某一层

https://www.zhihu.com/question/311095447/answer/589307812

在加载预训练模型的时候,我们有时想冻结前面几层,使其参数在训练过程中不发生变化。

我们需要先知道每一层的名字,通过如下代码打印:

net = Network()  # 获取自定义网络结构for name, value in net.named_parameters():    print('name: {0},\t grad: {1}'.format(name, value.requires_grad))

假设前几层信息如下:

name: cnn.VGG_16.convolution1_1.weight,   grad: Truename: cnn.VGG_16.convolution1_1.bias,   grad: Truename: cnn.VGG_16.convolution1_2.weight,   grad: Truename: cnn.VGG_16.convolution1_2.bias,   grad: Truename: cnn.VGG_16.convolution2_1.weight,   grad: Truename: cnn.VGG_16.convolution2_1.bias,   grad: Truename: cnn.VGG_16.convolution2_2.weight,   grad: Truename: cnn.VGG_16.convolution2_2.bias,   grad: True

后面的True表示该层的参数可训练,然后我们定义一个要冻结的层的列表:

no_grad = ['cnn.VGG_16.convolution1_1.weight','cnn.VGG_16.convolution1_1.bias','cnn.VGG_16.convolution1_2.weight','cnn.VGG_16.convolution1_2.bias']

冻结方法如下:

net = Net.CTPN()  # 获取网络结构for name, value in net.named_parameters():if name in no_grad:value.requires_grad = Falseelse:value.requires_grad = True

冻结后我们再打印每层的信息:

name: cnn.VGG_16.convolution1_1.weight,   grad: Falsename: cnn.VGG_16.convolution1_1.bias,   grad: Falsename: cnn.VGG_16.convolution1_2.weight,   grad: Falsename: cnn.VGG_16.convolution1_2.bias,   grad: Falsename: cnn.VGG_16.convolution2_1.weight,   grad: Truename: cnn.VGG_16.convolution2_1.bias,   grad: Truename: cnn.VGG_16.convolution2_2.weight,   grad: Truename: cnn.VGG_16.convolution2_2.bias,   grad: True

可以看到前两层的weight和bias的requires_grad都为False,表示它们不可训练。

最后在定义优化器时,只对requires_grad为True的层的参数进行更新。

optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.01)

9. 对不同层使用不同学习率

我们对模型的不同层使用不同的学习率。

还是使用这个模型作为例子:

net = Network()  # 获取自定义网络结构for name, value in net.named_parameters():print('name: {}'.format(name))# 输出:# name: cnn.VGG_16.convolution1_1.weight# name: cnn.VGG_16.convolution1_1.bias# name: cnn.VGG_16.convolution1_2.weight# name: cnn.VGG_16.convolution1_2.bias# name: cnn.VGG_16.convolution2_1.weight# name: cnn.VGG_16.convolution2_1.bias# name: cnn.VGG_16.convolution2_2.weight# name: cnn.VGG_16.convolution2_2.bias

对 convolution1 和 convolution2 设置不同的学习率,首先将它们分开,即放到不同的列表里:

conv1_params = []conv2_params = []for name, parms in net.named_parameters():if "convolution1" in name:        conv1_params += [parms]else:        conv2_params += [parms]# 然后在优化器中进行如下操作:optimizer = optim.Adam(    [        {"params": conv1_params, 'lr': 0.01},        {"params": conv2_params, 'lr': 0.001},    ],    weight_decay=1e-3,)

我们将模型划分为两部分,存放到一个列表里,每部分就对应上面的一个字典,在字典里设置不同的学习率。当这两部分有相同的其他参数时,就将该参数放到列表外面作为全局参数,如上面的`weight_decay`。

也可以在列表外设置一个全局学习率,当各部分字典里设置了局部学习率时,就使用该学习率,否则就使用列表外的全局学习率。


方便交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。

记得备注呦

推荐阅读:


让更多的人知道你“在看”

你可能感兴趣的文章
flink table & sql(一)table基础概念、环境搭建、source、sink
查看>>
flink table & sql(二)tableAPI
查看>>
flink之Timer定时器
查看>>
hive开启动态分区,文件压缩
查看>>
flink之TTL(Time To Live),State Backend,How to Clear State?
查看>>
flink之Operator State(non-keyed state)
查看>>
flink之checkpoint、savepoint,Flink计算发布之后是否还能够修改计算算子?(指状态恢复)
查看>>
flink window之四大WindowAssigner
查看>>
qt 程序打包
查看>>
python 的excel处理(xlwt+openpyxl+xlwings)
查看>>
python 文件处理
查看>>
c++ code time代码时汇总
查看>>
c++ 模板
查看>>
python django 环境搭建
查看>>
mySql使用
查看>>
【django】报错Operations to perform: Apply all migrations: admin, app, auth, contenttypes,
查看>>
c++多态,数据抽象,数据封装,接口(抽象类)总结(简略)
查看>>
c++文件操作(输入,输出,查找,清除)
查看>>
Java利用程序计算13 - 23 + 33 - 43 + 53 - 63 + 73 + ··· + 993 - 1003的和
查看>>
Error creating bean with name ‘dataSource‘ defined in class path resource [applicationContext.xml]
查看>>